Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(9): 092701, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30932526

RESUMEN

We report the first measurement of low-energy proton-capture cross sections of ^{124}Xe in a heavy-ion storage ring. ^{124}Xe^{54+} ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The ^{125}Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.

2.
Phys Rev Lett ; 113(11): 113001, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25259973

RESUMEN

The photoelectric effect has been studied in the regime of hard x rays and strong Coulomb fields via its time-reversed process of radiative recombination (RR). In the experiment, the relativistic electrons recombined into the 2p_{3/2} excited state of hydrogenlike uranium ions, and both the RR x rays and the subsequently emitted characteristic x rays were detected in coincidence. This allowed us to observe the coherence between the magnetic substates in a highly charged ion and to identify the contribution of the spin-orbit interaction to the RR process.

3.
Rev Sci Instrum ; 81(1): 013112, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20113086

RESUMEN

We have developed a novel laboratory instrument for studying gas phase, anion-neutral chemistry. To the best of our knowledge, this is the first such apparatus which uses fast merged beams to investigate anion-neutral chemical reactions. As proof-of-principle we have detected the associative detachment reaction H(-)+H-->H(2)+e(-). Here we describe the apparatus in detail and discuss related technical and experimental issues.

4.
Phys Rev Lett ; 100(19): 193201, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18518450

RESUMEN

Angular fragment distributions from the dissociative recombination (DR) of HD(+) were measured with well directed monochromatic low-energy electrons over a dense grid of collision energies from 7 to 35 meV, where pronounced rovibrational Feshbach resonances occur. Significant higher-order anisotropies are found in the distributions, whose size varies along energy in a partial correlation with the relative DR rate from fast-rotating molecules. This may indicate a breakdown of the nonrotation assumption so far applied to predict angular DR fragment distributions.

5.
Phys Rev Lett ; 100(3): 033001, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18232975

RESUMEN

Term energies for dielectronic-recombination Rydberg resonances below 0.07 eV are determined for Sc18+ with absolute accuracies below 0.0002 eV by electron collision spectroscopy in an ion storage ring, using the twin-electron-beam technique and a cryogenic photocathode. The lithiumlike 2s_{1/2}-2p_{3/2} transition energy for Z=21 is determined to 4.6 ppm, less than 1% of the few-body effects on radiative corrections. Features from the hyperfine structure of the 2s state could be resolved in the dielectronic-recombination spectrum.

6.
Phys Rev Lett ; 98(3): 033001, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17358680

RESUMEN

The hyperfine induced 2s2p (3)P(0) --> 2s(2) (1)S(0) transition rate A(HFI) in berylliumlike (47)Ti(18+) is measured. Resonant electron-ion recombination in a heavy-ion storage ring is employed to monitor the time dependent population of the (3)P(0) state. The experimental value A(HFI)=0.56(3) s(-1) is almost 60% larger than theoretically predicted.

7.
Philos Trans A Math Phys Eng Sci ; 364(1848): 2981-96; discussion 2996-7, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17015371

RESUMEN

Measurements on the energetic structure of the dissociative recombination rate coefficient in the millielectronvolt range are described for H3+ ions produced in the lowest rotational levels by collisional cooling and stored as a fast beam in the magnetic storage ring TSR (Test Storage Ring). The observed resonant structure is consistent with that found previously at the storage ring facility CRYRING in Stockholm, Sweden; theoretical predictions yield good agreement on the overall size of the rate coefficient, but do not reproduce the detailed structure. First studies on the nuclear spin symmetry influencing the lowest level populations show a small effect different from the theoretical predictions. Heating processes in the residual gas and by collisions with energetic electrons, as well as cooling owing to interaction with cold electrons, were observed in long-time storage experiments, using the low-energy dissociative recombination rate coefficient as a probe, and their consistency with the recent cold H3+ measurements is discussed.

8.
Phys Rev Lett ; 95(26): 263201, 2005 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-16486349

RESUMEN

The energy-resolved rate coefficient for the dissociative recombination (DR) of H(3)(+) with slow electrons has been measured by the storage-ring method using an ion beam produced from a radiofrequency multipole ion trap, employing buffer-gas cooling at 13 K. The electron energy spread of the merged-beams measurement is reduced to 500 microeV by using a cryogenic GaAs photocathode. This and a previous cold- measurement jointly confirm the capability of ion storage rings, with suitable ion sources, to store and investigate H(3)(+) in the two lowest, (J,G) = (1,1) and (1,0) rotational states prevailing also in cold interstellar matter. The use of para-H(2) in the ion source, expected to enhance para-H(3)(+) in the stored ion beam, is found to increase the DR rate coefficient at meV electron energies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...